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This report was prepared for the Test Track Division, Deputy for
Guidance Test, Air Force Missile. Development Center, Holloman AFB, New
Mexico.

The work supports Project 5928, Hypersonic Track Development, and
provides information on the limitations of rocket sled performance on

hypersonic track facilities.
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Velocity and acceleration profiles of rocket sleds on an advanced
track were determined, based on existing and advanced rocket engine
and sled designs. Sled families with a unit thrust of 100,000 pounds,
using propellants of different specific impulse, were postulated.
Rocket assembly weight and payload weight were expressed in terms of
thrust,and tank and structural weight in terms of propellant weight.
The upper limit for rocket sleds using liquid oxygen and liquid hydro-
gen as propellants is about 5400 feet per second in ambient air den-
sity at one percent payload-to-thrust ratio. This speed will increase
to about 8000 feet per second if the track is enclosed in an evecuated
tube at about one-third of the ambient air density. To attain this

performance a track about 40 statute miles long is required.

This report is approved for publication.

AMES H. RITTER

Colonel, USAF
Commander, Office of Research Analyses.
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ANALYSIS OF ADVANCED TRACK PERFORMANCE CHARACTERISTICS

' I. INTRODUCTION

Rocket sleds 'hﬁve proved to be a useful tool for meny research and
development purposes. However, present existing tracks allow only speeds
which are below those presently developed in aircraft and rocket design.

The purpose of this study is to determine maximim attainable speed
and acceleration profiles using existing systems or systems that will be
operative in the near future.

The performances of sled families with a 100,000-pound thrust engine,
considered as a unit, are calculated over & certain burning time range
for rocket systems with different specific impulses and different propel-
lant feed systems.

A small-gauge track vehicle similar to a monorail sled is selected
for this study. The present dual-rail track systems require slipper
beams which create unnecessary drag and weight, reducing the performance
considerably. Sled welight configurations are computed using certain con-
stant functions. Rocket assembly weight and payload weight are expressed
as a function of thrust. Tank and structural weight are expressed as a
function of propellant weight. Propellant weight, for each system, is a
function of thrust and burning time. Air drag and propellant wei;ht are
the dominant factors influencing sled performance.

Aerodynamic date for this vehicle type were investigated in two Tech-
nical Reports: In AFMDC-TR-60-3C, September 1960, wind tunnel investiga-

tions for basic and advanced rocket sled configurations were conducted




from M = 0.5 to M = 4.0; and AFOSR/DRA-62-18, September 1962, investigated

wind tunnel performance of a spike<bluff body configuration for a monorail
rocket sled from M = 2.0 to M = 5.0.

The performance data calculated in this study will be valid for every
smount of thrust as long as the following parameters remain constant (as
is explained in the following paragraph)

(1) Specific impulse

(2) Thrust-to-frontal area ratio

(3) Payload in percent of thrust

(4) Air density

(5) Burning time

A sled with 200,000 pounds thrust, a 10X-RP1 engine, a 1 percent pay- N
load, and a frontal area of 2 X 8.3 square feet will have the same acceler-
ation characteristics and velocity performance as the 100,000-pound thrust
sled calculated in this study with a LOX-RP1 engine, a 1 percent payload,
and an 8.3 square foot frontal area for the same burning time.

The performance calculations show that a sled with a maximum specific
impulse rocket system, such as LOX-Liquid Hydrogen, an optimum designed
sled body with a frontal area of about 8 square feet, and a 1 percent
payload-to-thrust ratio, will reach e maximum speed of about 5400 ft/sec
after a burning time of 40 seconds. A sled with the present pressurized
10X-Alcohol rocket system in an optimum sled body as mentioned before
would reach a maximum speed of 3200 ft/sec after 30 seconds burning time.

Any additional weight required for sled-borme braking systems is not

included in this performance study. =
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Sled accelerations higher than 10g during the acceleration phase can

only be attained with burning times of 10 seconds or less. One-stage
vehicles will be able to create a 10g enviromment up to 10 seconds under
full thrust condition. With the help of staging this time can be ex-
tended. Higher g-loads can be maintained for longer periods in the brak-
ing period only. If higher speeds and accelerations are required, a
reduction of the air density must be provided.

Assuming the sleds are running in a wide tube in which the air density
is reduced to 1/3 of the normsl atmosphere, a sled equipped with a IOX-
Hydrogen rocket will attain a speed of about 8000 ft/sec after a burning
time of 40 seconds. The present pressurized LOC-Alcohol sled would reach
about 4200 ft/sec with 30 seconds running time. The acceleration profiles
are much higher in this case. An acceleration of 15g can be maintained
over 10 seconds and 10g over 20 seconds. The distance traveled by the sled
et burnout increases considerably. A LOX-Hydrogen sled with a burning time
of 40 seconds has traveled 24.5 statute miles in ambient air density and
32 statute miles in 1/3 sambient air density at burnout. A LOX-Alcohol pres=-
surized system sled with burning time of 30 seconds has traveled about 10
statute miles at burnout.

The necessary total length of & high-performance track including the
coasting and braking phase would be restricted by geographic conditions
and the given mission requirements, which are not to be investigated in
this study.




II. SLED PARAMETERS AND THEIR INFLUENCE ON THE PERFORMANCE

The most important parsmeters of & sled vhich influence the performance
are:

(1) Rocket system

(2) Propellants, volume and weight

(3) Tanks

(4) Sled structure and configuration

(5) Payload and performance in acceleration phase

(6) Coasting and braking phase

Rocket Systems

Table I presents a comparison of various rocket systems which are
presently available or will be available in the near future. Depending
on the propellant combination, values are given for the specific impulse
and for the weight of the rocket assemblies, including pumps and feeding
lines in percent of the thrust. Comparing rocket systems with different
specific impulse and with a thrust of 100,000 pounds as & unity, we can
derive the weights for all subsystems of the sled as a function of this
unity. The weight of the rocket assembly can be expressed as & fixed
relationship to the thrust. In this subsystem are included all engine
parts, such as nozzle, combustion chamber, pumps, including power system,
valves, and feed lines.

The weight of a rocket assembly subsystem for missiles is at the
present time about 1.2 percent of the thrust (Table I) and is expected
to decrease to 0.75 percent in the near future. Sled-rocket assembly

systems are sbout two to three times heavier than those for missiles in

4



use. It is anticipated that in the next three to five years it will be

possible to build much lighter rocket assemblies for repeated use in the
track environment. For the purpose of this study it is assumed that the
pump-fed liquid rocket assembly subsystems for sleds weigh &bout 1.4
percent of the thrust. The weight of the pressurized liquid rocket sub-
assembly system is assumed to be 1 percent of the thrust, since no weight
for pumps and power supply has to be included.

The nozzle, plus casing weight of a present solid-propellant sled
rocket, is about 5 percent of the thrust for a burning time of 10
seconds. Since there are efforts under way to decrease this heavy
weight in the missile field, it is assumed for the purpose of this
study that it will be possible to decrease this ratio to about 2 per-
cent, to about 3 percent for a burning time of 20 seconds, and to
about U4 percent for & burning time of 30 seconds.

Tables II and III tabulate the rocket assembly weight for 100,000-
pound thrust pump-fed liquid rockets. Table IV tabulates rocket assem-

bly weight for a pressurized system, and Table V presents a solid system.

Propellant Weight

As soon as burning times longer than 10 seconds are considered, the
total propellant weight is dominant over all other weights and dictates
the performance of the sled.

The propellant weight 1s a function of thrust, specific impulse, and,
consequently, the flow rate of each propellant configuration. The func- i
tion is linear-increasing with burning time.  The best specific impulse



will therefore result in the lowest propellant weight for equal burning

time and equal thrust.
For 1iquid propellant pressurized rocket systems the weight of the

pressurized gas has to be added to the fuel and oxidizer weight.

Tanks

The tank weight depends on four main factors:
(1) Volume of propellants V (in®)
(2) Operational internal tank pressure P (psi)
(3) Tank material strength/density ratio —t < —psi )
d \ 1bs/in®
(4) The factor of safety J
The weight of a cylindrical tank is given by the following equation:

Waeo'j-&-poVO&-l/—a
F. K+2/3

The factor K =£D and represents the ratio of tank length to tank diam-
eter. The most important factor besides burst pressure and volume is the
strength/density ratio of the tank material; e.g., for:

Stainless Steel & =-2:29 , 1
F, 220000 745000

Aluminum Alloy = 0.100 , 1
60000 600000

Titenium Alloy = 01T 1
232000 1360000

The design ultimate stress (F,') is not the material ultimate stress.
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However, what must be considered is the allowable ultimate working stress,

including c¢onsiderations of fatigue and notch sensitivity of the material.
Materials which have low yield stress relative to their ultimate stress
will be critical at proof pressure.

The tank weights used in this study are c¢alculated along this line,
including 30 percent additional weight for baffles and fixtures. Sup-
porting structures are not included. It is assumed that every tank is
supported in such a manner that additional stresses superimposed from
the sled body during the run are of secondary influence.

The propellant inlaid pressure for pump feed systems is assumed to
vary between 25 to 35 psi. Additional tank pressure is created in the
acceleration phase depending on the g-load values. Therefore, the tanks
have to withstand maximum operational pressures up to 80 to 85 psi.

The propellant tanks of the pressurized systems are calculated for
an operational pressure of about 800 psi. To maintain this pressure
during the entire run, the tanks for the pressurizing gas have to be
designed for a safe pressure of 2400 psi. These high pressures, which
are needed for the continuous uniform operation of & pressurized sys-
tem, contribute to high tank weights leading to a considerable perform-
ance loss (Figure 3).

The casings of solid propellant rockets are subject to high internal
pressure during the burning phase. Solid propellant rockets are there-
fore somevwhat lover in performence then the liquid rockets due to their
considerable weight, which ranges between that of pump feed and pres-

surized systems.
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Configuration and Weight of the Sled Structure

The size and welght of the sled structure depend mainly on the
volume of the propellants, the size of the necessary tanks, and finally
on the operating pressure for which the tanks have to be designed.

For high-speed sleds considered in this study, the configuration
of the sled structure plus tanks is essential. Small frontal areas
with low CD-factors are requiréd to reduce the drag as much as possible.
Sleds with longer burning time require, therefore, slender bodies which
have additional skin friction of considerable influence on the amount of
the drag. To avoid high bending moments on the slender tanks more sup-
ports are needed.

Using & narrow gauge track, slipper beams can be avoided since this
would create a consliderable increase of the drag coefficient. According
to these considerations a spike body sled configuration similar to a
monorail sled was chosen in this study.

The data used in this study are taken from wind tunnel investigations
conducted under Contract AF29(600)-2839, Project 7856, Task 7854L4. The
spike-bluff body combination of a monorail rocket sled was investigated
in the range from M = 2.0 to M = 5.0. Selected for this study were the
date of a model configuration with a nose shoulder radius zero, sﬁike
location in the center of the circular frontal area, and a spike diameter
of .10 the diameter of the sled body. Figure 1 shows the shape of the
drag curve including ground interference plotted over the Mach number for
a sled body as mentioned above. The drag coefficient curve of a missile

including fins is shoyn in comparison to this curve.
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The weights of the sleds are derived from the present design state
for sleds with 10 seconds burning time. For sleds with longer burning
time the structural weights are progressively increased according to the

increase of propellant weight and tank dimensions (Tables II to V).

Payload and Performance

Since the thrust has been used as a unity the payload is expressed
in percent of the thrust. For the selected 100,000-pound thrust unity,
three payload steps are considered:

(1) One-half percent equal to 500-pound payload

(2) One percent equal to 1,000-pound payload

(3) Two percent equal to 2,000-pound payload

The performance of rocket sleds with this payload range and with a
burning time range between 10 and 40 seconds has been calculated for:

(1) 10X-Hydrogen rocket sleds with pump feed system

(2) LOX-RP1 rocket sleds with pump feed system

(3) 1L0X-Alcohol rocket sleds with pressurized system

(4) solid propellant sieds
In Tables II to V the weight and performance data for these sleds are
the same aerodynamic quality. The calculated weight data are plotted
over burning time in Figure 2 and the maximum attainable speeds over
burning time in Figure 3.

The flat slopes between 30 and 40 seconds burning time of the sys-

tems 1, 2, and 4 show that a further increase of burning time will not
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gain much in speed. The last of the three liquid systems will reach its
meximum speed with a burning time of about 25 seconds.

The acceleration profiles of the different systems (Figure 4) show
that g-loads higher than 10 can only be achieved with burning tiﬁes of
10 seconds and less. These g-loads vary considerably during the burning
time if the sled is running with full thrust. Longer burning times create
more or less constant g-loads but of lower level (Figures 4 and 5).

If it is possible to run the sleds in a lower atmospheric density,
higher speeds and better acceleration levels can be reached. Figure 6
shows the attainable speed at an alr density reduced to one-third of the
normal atmosphere at Holloman. In contrast to Figure 3, sleds with burn-
ing time over 40 seconds will promise a further increase in speed. A
change of payload range is of much higher influence than in normal density.
Maximum velocities over 8,000 ft/sec can be attained with the LOX-Hydrogen
sled, and the LOX-Alcohol pressurized sled will reach 4,200 ft/sec after
30 seconds burning time, reaching its maximm at over 40 seconds.

The acceleration profiles show a much smoother tendency. An acceleras=
tion of 15 g can be reached for 10 seconds duration, and over 10 g for 20
seconds burning time. The LOX-Hydrogen sled profiles are nearly constant
for 20 to 30 seconds burning time (Figure 7).

For sleds with lower specific impulse, a possibility of thrust throt-
tling exists to hold g-loads constant over a longer time. Unfortunately,
a serious restriction exists for the use of such high-speed sleds besldes
cost and technical difficulties. The necessary travel distance to obtain
the previously discussed performances will restrict their use in the

higher ranges.
10
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Figure 8 presents the traveled distance of the discussed sled systems

plotted over burning time in normal and in one-third air demnsity.

‘Coasting and Braking Phase

Since the structural weight of the sleds includes no weight for an
extra brake besides the spike, external braking systems must be applied.
Due to the high drag forces and the heat created by air friction, the
nose section of the sled must be designed to withstand this special en-
vironment and provides, in the higher speed zone with "spike in," an
excellent air breke.

But in the lower speed range, a piston type brake has to be applied
to decelerate the sled in a short distance. A trumpet-like tube, slotted
at the wide entrance and providing increasing compression over the length,
will provide a braking system which can be used without any additional

structural weight on the sled body.

III. REQUIRED TRACK LENGTHS

The total required track lengths are calculated for the entire run

of a few different sleds as follows:

(1) 10X-Hydrogen Sled

Sled Parameters:
Barniag time 30 seconds
Sled weight at burnout 6250 pounds
Maximum speed 5270 ft/sec
Payload welght 1 percent of thrust
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After & 9-second coasting phase and a "spike in" phase of 21 seconds,
sled speed is 659 ft/sec. Using a 10 g braking force, the necessary
length of the tube will be 0.2 statute miles.

Track Length:

Acceleration phase 17.6 statute miles
Coasting and "spike 11.7
in" phase '
Braking tube 0.2
Total track length 29.5 statute miles

(2) LOX-RP1 Sled
Sled Parameters:
Burning time 30 seconds
Sled weight at burnout 7100 pounds
Maximm speed 4180 ft/sec

Payload welght ' 1 percent of thrust

After a 9-second coasting phase and a "spike in" phase of 12 seconds,
sled speed is 1020 ft/sec. Using a 10 g braking force, the necessary
length of the tube will be 6.3 statute miles.

Track Length:
Acceleration phase 14.k statute miles
Coasting and "spike 10.3
in" phase
Total track length 25.0 stétute miles

P SR



If it is required to brake the sled with a constant 10 g force from the

maximum speed down to zero, the spike must be "in" after 3 seconds and

a braking tube of about 4.7 statute miles is required.

Track Length:
Acceleration phase

Coasting and "spike’
in" phase

Braking tube

Total track length

(3) 10X-Alcohol Sled
Sled Parameters:

Burning time

Sled weight at burmout

Maximum speed
Payload welght

1k.k statute miles
2.5

L.7

21.6 statute miles

30 seconds

14,000 pounds

3270 ft/sec

1 percent of thrust

After 24 seconds with "spike in," the sled decelerates to 1034 ft/sec.

Using a 5-g braking force, the necessary length of the tube will be

0.6 statute miles.
Track Length:
Acceleration phase
"Spike in" phase
Braking tube
Total track length

9.8 statute miles
8.1
0.6
18.5 statute miles
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(4) 10X-Hydrogen Sled - 1/3 Atmospheric Density

Sled Parameters:
Burning time 30 seconds
Sled weight at burnout 6250 pounds
Maximum speed 7690 ft/sec
Payload weight 1 percent of thrust

After a 9-second coasting phase in 1/5 density, a 12-second coasting phase
in normal density, and & 12-second "spike in" phase, sled speed is 905
ft/sec. Using a 10g braking force, the necessary length of the tube will

be 0.1 statute miles.

Track Length: .
Acceleration phase (1/3 density) 22.3 statute miles
Coasting (1/3 density) 9.1
Coasting (normal density) 5.9

"Spike in" phase (normal density) 2.3

Braking tube 0.1
Total track length 39.7 statute miles

1k



IVv. PROBLEM AREAS

As mentioned in the introduction considerable development work has
to be done in various areas to obtain the above-calculated maximum per-
formances. Further development is needed in the following subsystem
areas:

(1) Pump-fed sled rocket engine systems

(2) Lightweight aerodynamically clean tank-sled-bodies withstanding
aerodynamic drag forces and heat

(3) slipper development for hypersonic speeds

(4) External tube-type brake systems

(5) Space-time systems measuring hypersonic speeds with the neces-
sary accuracy

(6) A narrow gauge track bed avoiding shock wave reflection as much

as possible.

15
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